BSc. (P)/B.A. (P) with Mathematics as Non Major Category-III

DISCIPLINE SPECIFIC CORE COURSE – 2 (Discipline A-2): Elementary Linear Algebra

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credits	edits Credit distribution of the course			Eligibility	Pre-requisite
& Code		Lecture	Tutorial	Practical/	criteria	of the course
				Practice		(if any)
Elementary	4	3	1	0	XII pass with	NIL
Linear					Mathematics	
Algebra						

Learning Objectives: The objective of the course is to introduce the concept of vectors in \mathbb{R}^n , understanding the nature of solution of system of linear equations, and to view the $m \times n$ matrices as a linear function from \mathbb{R}^n to \mathbb{R}^m and vice versa. The concepts of linear independence and dependence, rank and linear transformations has been explained through matrices.

Learning Outcomes: This course will enable the students to:

- Visualize the space \mathbb{R}^n in terms of vectors and the interrelation of vectors with matrices.
- Familiarize with concepts of bases, dimension and minimal spanning sets in vector spaces.
- Learn about linear transformation and its corresponding matrix.

SYLLABUS OF DSC-2

UNIT – I: Euclidean Space \mathbb{R}^n and Matrices

Fundamental operations with vectors in Euclidean space \mathbb{R}^n , Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz inequality, Triangle inequality, Solving system of linear equations using Gaussian elimination, Application: Curve Fitting, Gauss-Jordan row reduction, Reduced row echelon form, Application: Solving several systems simultaneously, Equivalent systems, Rank and row space of a matrix, Eigenvalues, Eigenvectors, Eigenspace, Diagonalization, Characteristic polynomial of a matrix.

UNIT – II: Introduction to Vector Spaces

Definition, Examples and some elementary properties of vector spaces, Subspaces, Span, Linear independence and linear dependence of vectors, Basis and dimension of a vector space, Maximal linearly independent sets, Minimal spanning sets.

UNIT – III: Linear Transformations

Linear transformations: Definition, Examples and elementary properties, The matrix of a linear transformation, Kernel and range of a linear transformation, The dimension theorem,

(5 Weeks)

(4 Weeks)

(6 Weeks)

one-to-one and onto linear transformations, Invertible linear transformations, Isomorphic vector spaces.

Recommended Reading:

1. Andrilli, S., & Hecker, D. (2016). *Elementary Linear Algebra* (5th ed.). Elsevier India.

Suggestive Readings:

- i. Lay, David C., Lay, Steven R., & McDonald, Judi J. (2016). *Linear Algebra and its Applications* (5th ed.). Pearson Education.
- ii. Kolman, Bernard, & Hill, David R. (2001). *Introductory Linear Algebra with Applications* (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.