BSc. (P)/B.A. (P) with Mathematics as Non Major Category-III

DISCIPLINE SPECIFIC CORE COURSE - 2 (Discipline A-2): Elementary Linear Algebra

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Elementary Linear Algebra	4	3	1	0	XII pass with Mathematics	NIL

Learning Objectives: The objective of the course is to introduce the concept of vectors in \mathbb{R}^{n}, understanding the nature of solution of system of linear equations, and to view the $m \times n$ matrices as a linear function from \mathbb{R}^{n} to \mathbb{R}^{m} and vice versa. The concepts of linear independence and dependence, rank and linear transformations has been explained through matrices.

Learning Outcomes: This course will enable the students to:

- Visualize the space \mathbb{R}^{n} in terms of vectors and the interrelation of vectors with matrices.
- Familiarize with concepts of bases, dimension and minimal spanning sets in vector spaces.
- Learn about linear transformation and its corresponding matrix.

SYLLABUS OF DSC-2

UNIT - I: Euclidean Space \mathbb{R}^{n} and Matrices

(6 Weeks)
Fundamental operations with vectors in Euclidean space \mathbb{R}^{n}, Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz inequality, Triangle inequality, Solving system of linear equations using Gaussian elimination, Application: Curve Fitting, Gauss-Jordan row reduction, Reduced row echelon form, Application: Solving several systems simultaneously, Equivalent systems, Rank and row space of a matrix, Eigenvalues, Eigenvectors, Eigenspace, Diagonalization, Characteristic polynomial of a matrix.

UNIT - II: Introduction to Vector Spaces

(4 Weeks)
Definition, Examples and some elementary properties of vector spaces, Subspaces, Span, Linear independence and linear dependence of vectors, Basis and dimension of a vector space, Maximal linearly independent sets, Minimal spanning sets.

UNIT - III: Linear Transformations

(5 Weeks)
Linear transformations: Definition, Examples and elementary properties, The matrix of a linear transformation, Kernel and range of a linear transformation, The dimension theorem,
one-to-one and onto linear transformations, Invertible linear transformations, Isomorphic vector spaces.

Recommended Reading:

1. Andrilli, S., \& Hecker, D. (2016). Elementary Linear Algebra (5th ed.). Elsevier India.

Suggestive Readings:

i. Lay, David C., Lay, Steven R., \& McDonald, Judi J. (2016). Linear Algebra and its Applications (5th ed.). Pearson Education.
ii. Kolman, Bernard, \& Hill, David R. (2001). Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.

